69堂国产成人免费视频_亚洲成人999_最新日韩中文字幕_97在线视频免费_91久久国产精品_欧美美女一区二区_亚洲a级在线观看_亚洲最大成人免费视频_av中文字幕不卡_一本色道久久综合亚洲精品按摩

更多精彩內容,歡迎關注:

視頻號
視頻號

抖音
抖音

快手
快手

微博
微博

歸并排序算法流程圖解

文檔

歸并排序算法流程圖解

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
導讀歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

排序算法是《數據結構與算法》中最基本的算法之一。排序算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等。以下是歸并排序算法:

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。

作為一種典型的分而治之思想的算法應用,歸并排序的實現由兩種方法:

自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);自下而上的迭代;

在《數據結構與算法 JavaScript 描述》中,作者給出了自下而上的迭代方法。但是對于遞歸法,作者卻認為:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中這種方式不太可行,因為這個算法的遞歸深度對它來講太深了。

說實話,我不太理解這句話。意思是 JavaScript 編譯器內存太小,遞歸太深容易造成內存溢出嗎?還望有大神能夠指教。

和選擇排序一樣,歸并排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因為始終都是 O(nlogn) 的時間復雜度。代價是需要額外的內存空間。

2. 算法步驟

申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合并后的序列;

設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

比較兩個指針所指向的元素,選擇相對小的元素放入到合并空間,并移動指針到下一位置;

重復步驟 3 直到某一指針達到序列尾;

將另一序列剩下的所有元素直接復制到合并序列尾。

3. 動圖演示

代碼實現JavaScript實例 function mergeSort(arr) { ?// 采用自上而下的遞歸方法? ? var len = arr.length;? ? if(len < 2) {? ? ? ? return arr;? ? }? ? var middle = Math.floor(len / 2),? ? ? ? left = arr.slice(0, middle),? ? ? ? right = arr.slice(middle);? ? return merge(mergeSort(left), mergeSort(right));}function merge(left, right){? ? var result = [];? ? while (left.length && right.length) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? result.push(left.shift());? ? ? ? } else {? ? ? ? ? ? result.push(right.shift());? ? ? ? }? ? }? ? while (left.length)? ? ? ? result.push(left.shift());? ? while (right.length)? ? ? ? result.push(right.shift());? ? return result;}Python實例 def mergeSort(arr):? ? import math? ? if(len(arr)<2):? ? ? ? return arr? ? middle = math.floor(len(arr)/2)? ? left, right = arr[0:middle], arr[middle:]? ? return merge(mergeSort(left), mergeSort(right))def merge(left,right):? ? result = []? ? while left and right:? ? ? ? if left[0] <= right[0]:? ? ? ? ? ? result.append(left.pop(0))? ? ? ? else:? ? ? ? ? ? result.append(right.pop(0));? ? while left:? ? ? ? result.append(left.pop(0))? ? while right:? ? ? ? result.append(right.pop(0));? ? return resultGo 實例 func mergeSort(arr []int) []int {? ? ? ? length := len(arr)? ? ? ? if length < 2 {? ? ? ? ? ? ? ? return arr? ? ? ? }? ? ? ? middle := length / 2? ? ? ? left := arr[0:middle]? ? ? ? right := arr[middle:]? ? ? ? return merge(mergeSort(left), mergeSort(right))}func merge(left []int, right []int) []int {? ? ? ? var result []int? ? ? ? for len(left) != 0 && len(right) != 0 {? ? ? ? ? ? ? ? if left[0] <= right[0] {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? ? ? ? ? left = left[1:]? ? ? ? ? ? ? ? } else {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? ? ? ? ? right = right[1:]? ? ? ? ? ? ? ? }? ? ? ? }? ? ? ? for len(left) != 0 {? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? left = left[1:]? ? ? ? }? ? ? ? for len(right) != 0 {? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? right = right[1:]? ? ? ? }? ? ? ? return result}Java實例 public class MergeSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數內容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? if (arr.length < 2) {? ? ? ? ? ? return arr;? ? ? ? }? ? ? ? int middle = (int) Math.floor(arr.length / 2);? ? ? ? int[] left = Arrays.copyOfRange(arr, 0, middle);? ? ? ? int[] right = Arrays.copyOfRange(arr, middle, arr.length);? ? ? ? return merge(sort(left), sort(right));? ? }? ? protected int[] merge(int[] left, int[] right) {? ? ? ? int[] result = new int[left.length + right.length];? ? ? ? int i = 0;? ? ? ? while (left.length > 0 && right.length > 0) {? ? ? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? ? ? } else {? ? ? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? ? ? }? ? ? ? }? ? ? ? while (left.length > 0) {? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? }? ? ? ? while (right.length > 0) {? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? }? ? ? ? return result;? ? }}PHP實例 function mergeSort($arr){? ? $len = count($arr);? ? if ($len < 2) {? ? ? ? return $arr;? ? }? ? $middle = floor($len / 2);? ? $left = array_slice($arr, 0, $middle);? ? $right = array_slice($arr, $middle);? ? return merge(mergeSort($left), mergeSort($right));}function merge($left, $right){? ? $result = [];? ? while (count($left) > 0 && count($right) > 0) {? ? ? ? if ($left[0] <= $right[0]) {? ? ? ? ? ? $result[] = array_shift($left);? ? ? ? } else {? ? ? ? ? ? $result[] = array_shift($right);? ? ? ? }? ? }? ? while (count($left))? ? ? ? $result[] = array_shift($left);? ? while (count($right))? ? ? ? $result[] = array_shift($right);? ? return $result;}C實例 int min(int x, int y) {? ? return x < y ? x : y;}void merge_sort(int arr[], int len) {? ? int *a = arr;? ? int *b = (int *) malloc(len * sizeof(int));? ? int seg, start;? ? for (seg = 1; seg < len; seg += seg) {? ? ? ? for (start = 0; start < len; start += seg * 2) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? int *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? int i;? ? ? ? for (i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? free(b);}

遞歸版:

實例 void merge_sort_recursive(int arr[], int reg[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? int len = end - start, mid = (len >> 1) + start;? ? int start1 = start, end1 = mid;? ? int start2 = mid + 1, end2 = end;? ? merge_sort_recursive(arr, reg, start1, end1);? ? merge_sort_recursive(arr, reg, start2, end2);? ? int k = start;? ? while (start1 <= end1 && start2 <= end2)? ? ? ? reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];? ? while (start1 <= end1)? ? ? ? reg[k++] = arr[start1++];? ? while (start2 <= end2)? ? ? ? reg[k++] = arr[start2++];? ? for (k = start; k <= end; k++)? ? ? ? arr[k] = reg[k];}void merge_sort(int arr[], const int len) {? ? int reg[len];? ? merge_sort_recursive(arr, reg, 0, len - 1);}C++

迭代版:

實例 template // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能void merge_sort(T arr[], int len) {? ? T *a = arr;? ? T *b = new T[len];? ? for (int seg = 1; seg < len; seg += seg) {? ? ? ? for (int start = 0; start < len; start += seg + seg) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? T *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? for (int i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? delete[] b;}

遞歸版:

實例 void Merge(vector &Array, int front, int mid, int end) {? ? // preconditions:? ? // Array[front...mid] is sorted? ? // Array[mid+1 ... end] is sorted? ? // Copy Array[front ... mid] to LeftSubArray? ? // Copy Array[mid+1 ... end] to RightSubArray? ? vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);? ? vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);? ? int idxLeft = 0, idxRight = 0;? ? LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max());? ? RightSubArray.insert(RightSubArray.end(), numeric_limits::max());? ? // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]? ? for (int i = front; i <= end; i++) {? ? ? ? if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {? ? ? ? ? ? Array[i] = LeftSubArray[idxLeft];? ? ? ? ? ? idxLeft++;? ? ? ? } else {? ? ? ? ? ? Array[i] = RightSubArray[idxRight];? ? ? ? ? ? idxRight++;? ? ? ? }? ? }}void MergeSort(vector &Array, int front, int end) {? ? if (front >= end)? ? ? ? return;? ? int mid = (front + end) / 2;? ? MergeSort(Array, front, mid);? ? MergeSort(Array, mid + 1, end);? ? Merge(Array, front, mid, end);}C#實例 public static List sort(List lst) {? ? if (lst.Count <= 1)? ? ? ? return lst;? ? int mid = lst.Count / 2;? ? List left = new List(); ?// 定義左側List? ? List right = new List(); // 定義右側List? ? // 以下兩個循環把 lst 分為左右兩個 List? ? for (int i = 0; i < mid; i++)? ? ? ? left.Add(lst[i]);? ? for (int j = mid; j < lst.Count; j++)? ? ? ? right.Add(lst[j]);? ? left = sort(left);? ? right = sort(right);? ? return merge(left, right);}/// /// 合併兩個已經排好序的List/// /// 左側List/// 右側List/// static List merge(List left, List right) {? ? List temp = new List();? ? while (left.Count > 0 && right.Count > 0) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? temp.Add(left[0]);? ? ? ? ? ? left.RemoveAt(0);? ? ? ? } else {? ? ? ? ? ? temp.Add(right[0]);? ? ? ? ? ? right.RemoveAt(0);? ? ? ? }? ? }? ? if (left.Count > 0) {? ? ? ? for (int i = 0; i < left.Count; i++)? ? ? ? ? ? temp.Add(left[i]);? ? }? ? if (right.Count > 0) {? ? ? ? for (int i = 0; i < right.Count; i++)? ? ? ? ? ? temp.Add(right[i]);? ? }? ? return temp;}Ruby實例 def merge list? return list if list.size < 2? pivot = list.size / 2? # Merge? lambda { |left, right|? ? final = []? ? until left.empty? or right.empty?? ? ? final << if left.first < right.first; left.shift else right.shift end? ? end? ? final + left + right? }.call merge(list[0...pivot]), merge(list[pivot..-1])end

參考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/5.mergeSort.md

https://zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F

以下是熱心網友對歸并排序算法的補充,僅供參考:

熱心網友提供的補充1:

分而治之

可以看到這種結構很像一棵完全二叉樹,本文的歸并排序我們采用遞歸去實現(也可采用迭代的方式去實現)。分階段可以理解為就是遞歸拆分子序列的過程,遞歸深度為log2n。

合并相鄰有序子序列

再來看看治階段,我們需要將兩個已經有序的子序列合并成一個有序序列,比如上圖中的最后一次合并,要將[4,5,7,8]和[1,2,3,6]兩個已經有序的子序列,合并為最終序列[1,2,3,4,5,6,7,8],來看下實現步驟。

import java.util.Arrays;

/**
 * Created by chengxiao on 2016/12/8.
 */
public class MergeSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        int []temp = new int[arr.length];//在排序前,先建好一個長度等于原數組長度的臨時數組,避免遞歸中頻繁開辟空間
        sort(arr,0,arr.length-1,temp);
    }
    private static void sort(int[] arr,int left,int right,int []temp){
        if(left以上為歸并排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等排序算法各有優缺點,用一張圖概括: 

關于時間復雜度

平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數。 希爾排序

線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。

關于穩定性

穩定的排序算法:冒泡排序、插入排序、歸并排序和基數排序。

不是穩定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

名詞解釋:

n:數據規模

k:"桶"的個數

In-place:占用常數內存,不占用額外內存

Out-place:占用額外內存

穩定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

文檔

歸并排序算法流程圖解

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
為你推薦
資訊專欄
熱門視頻
相關推薦
數據結構希爾排序c語言 選擇排序算法例子 冒泡排序c語言 堆排序算法c語言 歸并排序算法原理 希爾排序又叫什么名字 選擇排序思想 java冒泡排序 堆排序c語言代碼 歸并排序思路 希爾排序c語言 選擇排序法原理 編寫一個冒泡排序算法 用c語言實現堆排序算法 歸并排序算法穩定嗎 希爾排序算法特點 直接選擇排序時間復雜度 冒泡排序原理 堆排序c語言 歸并排序劃分子表 堆排序計算 冒泡排序流程圖 排序算法的一般選擇規則 希爾排序c 實現歸并排序利用的算法 堆是一種什么排序方法 降序排序冒泡排序優化 什么是選擇排序法 數據結構希爾排序流程圖 歸并排序算法c語言 快速排序算法原理 堆排序是穩定的排序算法 桶排序java 冒泡排序法的基本思路 c語言選擇排序從小到大 希爾排序法是怎么排的 歸并排序怎么排 快速排序怎么排 堆排序思想 c語言桶式排序
Top 69堂国产成人免费视频_亚洲成人999_最新日韩中文字幕_97在线视频免费_91久久国产精品_欧美美女一区二区_亚洲a级在线观看_亚洲最大成人免费视频_av中文字幕不卡_一本色道久久综合亚洲精品按摩
日韩精品电影一区亚洲| 亚洲视频每日更新| 亚洲欧美区自拍先锋| 99精品视频一区| 午夜精品123| 精品乱人伦一区二区三区| 久久99精品久久久久久动态图| 日韩欧美资源站| 国产一区不卡在线| 成人欧美一区二区三区白人 | 欧美群妇大交群中文字幕| 亚洲成人在线观看视频| 国产精品私人自拍| 日韩免费视频一区| 粉嫩av亚洲一区二区图片| 国产日韩欧美精品综合| 日韩精品一区二区三区四区| 国产成人高清在线| 极品美女销魂一区二区三区免费| 亚洲bt欧美bt精品777| 亚洲品质自拍视频网站| 亚洲美女电影在线| 亚洲自拍偷拍图区| 日韩av午夜在线观看| 蜜臀精品一区二区三区在线观看| 亚洲aaa精品| 国产精品自在在线| 成熟亚洲日本毛茸茸凸凹| 91最新地址在线播放| 日本高清不卡视频| 91在线视频官网| 欧美一区二区三区啪啪| 欧美在线视频日韩| 欧美巨大另类极品videosbest| 精品国产伦理网| 成人性生交大片免费看中文网站| 亚洲精品一区二区在线观看| 久久精品国产免费看久久精品| 国产麻豆视频精品| 国产欧美一区二区精品忘忧草| 日韩精品色哟哟| xf在线a精品一区二区视频网站| 亚洲丰满少妇videoshd| 欧美精品1区2区3区| 国产精品911| 亚洲精品视频免费看| 91免费在线播放| 麻豆高清免费国产一区| 久久精品一区蜜桃臀影院| 91视频免费看| 国产成人精品免费一区二区| 综合久久久久综合| 91精品一区二区三区在线观看| 国产成人小视频| 亚洲色图第一区| 欧美肥妇free| 欧美色窝79yyyycom| av福利精品导航| 激情图区综合网| 日韩美女精品在线| 国产精品灌醉下药二区| 91精品国产综合久久精品性色| 国产毛片一区二区| 极品瑜伽女神91| 蜜臀av性久久久久蜜臀aⅴ| 亚洲国产aⅴ天堂久久| 国产精品不卡在线观看| 精品成人一区二区三区四区| 欧美日韩一区三区| 欧美成人三级在线| 精品伦理精品一区| 亚洲欧美在线另类| 一区二区三区日韩精品| 亚洲国产视频在线| 麻豆久久久久久久| 99在线精品一区二区三区| 在线亚洲一区二区| 精品区一区二区| 首页国产欧美久久| 成人午夜av电影| 成人激情图片网| 日韩成人伦理电影在线观看| 一区二区三区中文字幕电影| 麻豆精品在线观看| 欧美日韩美少妇| 一区二区三区不卡在线观看| 日韩电影免费在线观看网站| 在线精品国精品国产尤物884a| 精品国产免费一区二区三区四区 | 蜜桃av一区二区在线观看| 丁香六月综合激情| 欧美性色综合网| 精品国产一区二区国模嫣然| 一区二区三区中文免费| 经典三级一区二区| 69p69国产精品| 一区二区三区在线观看网站| 国内成人自拍视频| 欧美刺激午夜性久久久久久久| 最新国产の精品合集bt伙计| 国产麻豆精品久久一二三| 91麻豆精品国产91久久久| 亚洲影视在线播放| 欧美亚洲高清一区| 午夜久久久久久久久| 欧美一级搡bbbb搡bbbb| 久久99精品网久久| 国产亚洲欧美色| 91麻豆蜜桃一区二区三区| 国产精品久久久久久亚洲伦| 成人av一区二区三区| 亚洲日本va午夜在线影院| 色综合天天综合在线视频| 亚洲国产日韩av| 久久嫩草精品久久久精品| 成人高清视频免费观看| 亚洲欧美激情插| 精品福利av导航| 91麻豆免费视频| 国产精品99久| 日本免费新一区视频| 国产精品第一页第二页第三页| 在线亚洲+欧美+日本专区| 国产老肥熟一区二区三区| 亚洲一二三四久久| 国产精品美女久久福利网站| 欧美一区二区日韩一区二区| 色婷婷国产精品综合在线观看| 久久精品二区亚洲w码| 午夜精品一区二区三区免费视频| 久久免费看少妇高潮| 欧美一区二区在线看| 色综合av在线| 欧美三级欧美一级| 精品视频色一区| 欧美日韩不卡一区二区| 欧美天堂一区二区三区| 欧美这里有精品| 7777精品伊人久久久大香线蕉完整版| 欧美视频三区在线播放| 91麻豆精品国产自产在线观看一区| 国产一区三区三区| 99综合电影在线视频| 欧美日韩精品一二三区| 91精品国产综合久久久蜜臀图片| 欧美videos大乳护士334| 欧美国产日韩一二三区| 亚洲欧洲精品一区二区三区不卡 | 成人污视频在线观看| 国产91丝袜在线播放九色| 99精品久久只有精品| 91精品午夜视频| 一区二区三区在线观看欧美| 看电影不卡的网站| 在线免费观看成人短视频| 欧美一区二区三区婷婷月色| 亚洲欧美一区二区在线观看| 日韩电影一二三区| 一本高清dvd不卡在线观看| 日韩视频免费观看高清完整版| 亚洲日本欧美天堂| 国产精品主播直播| 欧美午夜精品久久久久久孕妇| 国产视频在线观看一区二区三区| 一区二区三区在线观看欧美| av在线不卡观看免费观看| 久久看人人爽人人| 国产麻豆精品一区二区| 久久九九久久九九| 国产一区亚洲一区| 国产精品丝袜91| 色综合婷婷久久| 天天综合日日夜夜精品| 欧美一区二区成人| 风流少妇一区二区| 国产精品国产三级国产有无不卡| 成人动漫一区二区在线| 一区二区三区不卡视频在线观看| 欧美久久久一区| 懂色av一区二区三区免费看| 亚洲精品日产精品乱码不卡| 欧美男生操女生| 国产一区二区在线观看视频| 国产精品午夜电影| 精品久久久久久亚洲综合网| 色综合久久六月婷婷中文字幕| 中文字幕高清不卡| 91亚洲国产成人精品一区二区三 | 在线成人高清不卡| 成人免费在线播放视频| 欧美mv日韩mv国产网站app| 最新热久久免费视频| 激情都市一区二区| 国产蜜臀av在线一区二区三区| 日韩av电影一区| 成人免费看视频| 亚洲小说春色综合另类电影| 色爱区综合激月婷婷| 亚洲国产一区视频| 久久久久久免费网|