69堂国产成人免费视频_亚洲成人999_最新日韩中文字幕_97在线视频免费_91久久国产精品_欧美美女一区二区_亚洲a级在线观看_亚洲最大成人免费视频_av中文字幕不卡_一本色道久久综合亚洲精品按摩

更多精彩內容,歡迎關注:

視頻號
視頻號

抖音
抖音

快手
快手

微博
微博

歸并排序算法穩定嗎

文檔

歸并排序算法穩定嗎

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
導讀歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

排序算法是《數據結構與算法》中最基本的算法之一。排序算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等。以下是歸并排序算法:

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。

作為一種典型的分而治之思想的算法應用,歸并排序的實現由兩種方法:

自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);自下而上的迭代;

在《數據結構與算法 JavaScript 描述》中,作者給出了自下而上的迭代方法。但是對于遞歸法,作者卻認為:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中這種方式不太可行,因為這個算法的遞歸深度對它來講太深了。

說實話,我不太理解這句話。意思是 JavaScript 編譯器內存太小,遞歸太深容易造成內存溢出嗎?還望有大神能夠指教。

和選擇排序一樣,歸并排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因為始終都是 O(nlogn) 的時間復雜度。代價是需要額外的內存空間。

2. 算法步驟

申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合并后的序列;

設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

比較兩個指針所指向的元素,選擇相對小的元素放入到合并空間,并移動指針到下一位置;

重復步驟 3 直到某一指針達到序列尾;

將另一序列剩下的所有元素直接復制到合并序列尾。

3. 動圖演示

代碼實現JavaScript實例 function mergeSort(arr) { ?// 采用自上而下的遞歸方法? ? var len = arr.length;? ? if(len < 2) {? ? ? ? return arr;? ? }? ? var middle = Math.floor(len / 2),? ? ? ? left = arr.slice(0, middle),? ? ? ? right = arr.slice(middle);? ? return merge(mergeSort(left), mergeSort(right));}function merge(left, right){? ? var result = [];? ? while (left.length && right.length) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? result.push(left.shift());? ? ? ? } else {? ? ? ? ? ? result.push(right.shift());? ? ? ? }? ? }? ? while (left.length)? ? ? ? result.push(left.shift());? ? while (right.length)? ? ? ? result.push(right.shift());? ? return result;}Python實例 def mergeSort(arr):? ? import math? ? if(len(arr)<2):? ? ? ? return arr? ? middle = math.floor(len(arr)/2)? ? left, right = arr[0:middle], arr[middle:]? ? return merge(mergeSort(left), mergeSort(right))def merge(left,right):? ? result = []? ? while left and right:? ? ? ? if left[0] <= right[0]:? ? ? ? ? ? result.append(left.pop(0))? ? ? ? else:? ? ? ? ? ? result.append(right.pop(0));? ? while left:? ? ? ? result.append(left.pop(0))? ? while right:? ? ? ? result.append(right.pop(0));? ? return resultGo 實例 func mergeSort(arr []int) []int {? ? ? ? length := len(arr)? ? ? ? if length < 2 {? ? ? ? ? ? ? ? return arr? ? ? ? }? ? ? ? middle := length / 2? ? ? ? left := arr[0:middle]? ? ? ? right := arr[middle:]? ? ? ? return merge(mergeSort(left), mergeSort(right))}func merge(left []int, right []int) []int {? ? ? ? var result []int? ? ? ? for len(left) != 0 && len(right) != 0 {? ? ? ? ? ? ? ? if left[0] <= right[0] {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? ? ? ? ? left = left[1:]? ? ? ? ? ? ? ? } else {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? ? ? ? ? right = right[1:]? ? ? ? ? ? ? ? }? ? ? ? }? ? ? ? for len(left) != 0 {? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? left = left[1:]? ? ? ? }? ? ? ? for len(right) != 0 {? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? right = right[1:]? ? ? ? }? ? ? ? return result}Java實例 public class MergeSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數內容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? if (arr.length < 2) {? ? ? ? ? ? return arr;? ? ? ? }? ? ? ? int middle = (int) Math.floor(arr.length / 2);? ? ? ? int[] left = Arrays.copyOfRange(arr, 0, middle);? ? ? ? int[] right = Arrays.copyOfRange(arr, middle, arr.length);? ? ? ? return merge(sort(left), sort(right));? ? }? ? protected int[] merge(int[] left, int[] right) {? ? ? ? int[] result = new int[left.length + right.length];? ? ? ? int i = 0;? ? ? ? while (left.length > 0 && right.length > 0) {? ? ? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? ? ? } else {? ? ? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? ? ? }? ? ? ? }? ? ? ? while (left.length > 0) {? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? }? ? ? ? while (right.length > 0) {? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? }? ? ? ? return result;? ? }}PHP實例 function mergeSort($arr){? ? $len = count($arr);? ? if ($len < 2) {? ? ? ? return $arr;? ? }? ? $middle = floor($len / 2);? ? $left = array_slice($arr, 0, $middle);? ? $right = array_slice($arr, $middle);? ? return merge(mergeSort($left), mergeSort($right));}function merge($left, $right){? ? $result = [];? ? while (count($left) > 0 && count($right) > 0) {? ? ? ? if ($left[0] <= $right[0]) {? ? ? ? ? ? $result[] = array_shift($left);? ? ? ? } else {? ? ? ? ? ? $result[] = array_shift($right);? ? ? ? }? ? }? ? while (count($left))? ? ? ? $result[] = array_shift($left);? ? while (count($right))? ? ? ? $result[] = array_shift($right);? ? return $result;}C實例 int min(int x, int y) {? ? return x < y ? x : y;}void merge_sort(int arr[], int len) {? ? int *a = arr;? ? int *b = (int *) malloc(len * sizeof(int));? ? int seg, start;? ? for (seg = 1; seg < len; seg += seg) {? ? ? ? for (start = 0; start < len; start += seg * 2) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? int *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? int i;? ? ? ? for (i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? free(b);}

遞歸版:

實例 void merge_sort_recursive(int arr[], int reg[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? int len = end - start, mid = (len >> 1) + start;? ? int start1 = start, end1 = mid;? ? int start2 = mid + 1, end2 = end;? ? merge_sort_recursive(arr, reg, start1, end1);? ? merge_sort_recursive(arr, reg, start2, end2);? ? int k = start;? ? while (start1 <= end1 && start2 <= end2)? ? ? ? reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];? ? while (start1 <= end1)? ? ? ? reg[k++] = arr[start1++];? ? while (start2 <= end2)? ? ? ? reg[k++] = arr[start2++];? ? for (k = start; k <= end; k++)? ? ? ? arr[k] = reg[k];}void merge_sort(int arr[], const int len) {? ? int reg[len];? ? merge_sort_recursive(arr, reg, 0, len - 1);}C++

迭代版:

實例 template // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能void merge_sort(T arr[], int len) {? ? T *a = arr;? ? T *b = new T[len];? ? for (int seg = 1; seg < len; seg += seg) {? ? ? ? for (int start = 0; start < len; start += seg + seg) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? T *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? for (int i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? delete[] b;}

遞歸版:

實例 void Merge(vector &Array, int front, int mid, int end) {? ? // preconditions:? ? // Array[front...mid] is sorted? ? // Array[mid+1 ... end] is sorted? ? // Copy Array[front ... mid] to LeftSubArray? ? // Copy Array[mid+1 ... end] to RightSubArray? ? vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);? ? vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);? ? int idxLeft = 0, idxRight = 0;? ? LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max());? ? RightSubArray.insert(RightSubArray.end(), numeric_limits::max());? ? // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]? ? for (int i = front; i <= end; i++) {? ? ? ? if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {? ? ? ? ? ? Array[i] = LeftSubArray[idxLeft];? ? ? ? ? ? idxLeft++;? ? ? ? } else {? ? ? ? ? ? Array[i] = RightSubArray[idxRight];? ? ? ? ? ? idxRight++;? ? ? ? }? ? }}void MergeSort(vector &Array, int front, int end) {? ? if (front >= end)? ? ? ? return;? ? int mid = (front + end) / 2;? ? MergeSort(Array, front, mid);? ? MergeSort(Array, mid + 1, end);? ? Merge(Array, front, mid, end);}C#實例 public static List sort(List lst) {? ? if (lst.Count <= 1)? ? ? ? return lst;? ? int mid = lst.Count / 2;? ? List left = new List(); ?// 定義左側List? ? List right = new List(); // 定義右側List? ? // 以下兩個循環把 lst 分為左右兩個 List? ? for (int i = 0; i < mid; i++)? ? ? ? left.Add(lst[i]);? ? for (int j = mid; j < lst.Count; j++)? ? ? ? right.Add(lst[j]);? ? left = sort(left);? ? right = sort(right);? ? return merge(left, right);}/// /// 合併兩個已經排好序的List/// /// 左側List/// 右側List/// static List merge(List left, List right) {? ? List temp = new List();? ? while (left.Count > 0 && right.Count > 0) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? temp.Add(left[0]);? ? ? ? ? ? left.RemoveAt(0);? ? ? ? } else {? ? ? ? ? ? temp.Add(right[0]);? ? ? ? ? ? right.RemoveAt(0);? ? ? ? }? ? }? ? if (left.Count > 0) {? ? ? ? for (int i = 0; i < left.Count; i++)? ? ? ? ? ? temp.Add(left[i]);? ? }? ? if (right.Count > 0) {? ? ? ? for (int i = 0; i < right.Count; i++)? ? ? ? ? ? temp.Add(right[i]);? ? }? ? return temp;}Ruby實例 def merge list? return list if list.size < 2? pivot = list.size / 2? # Merge? lambda { |left, right|? ? final = []? ? until left.empty? or right.empty?? ? ? final << if left.first < right.first; left.shift else right.shift end? ? end? ? final + left + right? }.call merge(list[0...pivot]), merge(list[pivot..-1])end

參考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/5.mergeSort.md

https://zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F

以下是熱心網友對歸并排序算法的補充,僅供參考:

熱心網友提供的補充1:

分而治之

可以看到這種結構很像一棵完全二叉樹,本文的歸并排序我們采用遞歸去實現(也可采用迭代的方式去實現)。分階段可以理解為就是遞歸拆分子序列的過程,遞歸深度為log2n。

合并相鄰有序子序列

再來看看治階段,我們需要將兩個已經有序的子序列合并成一個有序序列,比如上圖中的最后一次合并,要將[4,5,7,8]和[1,2,3,6]兩個已經有序的子序列,合并為最終序列[1,2,3,4,5,6,7,8],來看下實現步驟。

import java.util.Arrays;

/**
 * Created by chengxiao on 2016/12/8.
 */
public class MergeSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        int []temp = new int[arr.length];//在排序前,先建好一個長度等于原數組長度的臨時數組,避免遞歸中頻繁開辟空間
        sort(arr,0,arr.length-1,temp);
    }
    private static void sort(int[] arr,int left,int right,int []temp){
        if(left以上為歸并排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等排序算法各有優缺點,用一張圖概括: 

關于時間復雜度

平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數。 希爾排序

線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。

關于穩定性

穩定的排序算法:冒泡排序、插入排序、歸并排序和基數排序。

不是穩定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

名詞解釋:

n:數據規模

k:"桶"的個數

In-place:占用常數內存,不占用額外內存

Out-place:占用額外內存

穩定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

文檔

歸并排序算法穩定嗎

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
為你推薦
資訊專欄
熱門視頻
相關推薦
希爾排序算法特點 直接選擇排序時間復雜度 冒泡排序原理 堆排序c語言 歸并排序劃分子表 希爾排序算法思想 c語言選擇法排序10個數 用冒泡排序法求閏年 歸并排序的詳細過程 希爾排序c語言程序 c語言選擇排序算法 c語言冒泡排序10個數 歸并排序代碼 希爾排序法 選擇排序算法流程圖 冒泡排序的原理 歸并排序圖解 希爾排序例子 簡單選擇排序算法圖解 冒泡排序算法步驟 用c語言實現堆排序算法 編寫一個冒泡排序算法 選擇排序法原理 希爾排序c語言 歸并排序思路 堆排序c語言代碼 java冒泡排序 選擇排序思想 希爾排序又叫什么名字 歸并排序算法原理 堆排序算法c語言 冒泡排序c語言 選擇排序算法例子 數據結構希爾排序c語言 歸并排序算法流程圖解 堆排序計算 冒泡排序流程圖 排序算法的一般選擇規則 希爾排序c 實現歸并排序利用的算法
Top 69堂国产成人免费视频_亚洲成人999_最新日韩中文字幕_97在线视频免费_91久久国产精品_欧美美女一区二区_亚洲a级在线观看_亚洲最大成人免费视频_av中文字幕不卡_一本色道久久综合亚洲精品按摩
亚洲在线观看免费视频| 欧美亚洲日本国产| 久久激情五月激情| 欧美挠脚心视频网站| 亚洲国产综合91精品麻豆| 国产91在线|亚洲| 亚洲国产精品成人综合| 成人手机电影网| 欧美高清在线一区二区| 99v久久综合狠狠综合久久| 中文字幕+乱码+中文字幕一区| 久久国产精品99精品国产 | 老司机精品视频线观看86| 欧美欧美欧美欧美首页| 日本美女视频一区二区| 精品国产免费人成在线观看| 另类小说图片综合网| 中文天堂在线一区| 欧美日韩午夜在线| 国产最新精品免费| 亚洲综合丁香婷婷六月香| 日韩欧美一区二区在线视频| 国产精品自在在线| 亚洲视频一二三区| 日韩一区二区三区在线| 不卡视频一二三四| 久久福利视频一区二区| 亚洲一区二区在线播放相泽| 欧美精品一区二区蜜臀亚洲| 色av一区二区| 久久99精品久久久久婷婷| 亚洲精品视频自拍| 中文字幕成人网| 91精品在线一区二区| 白白色 亚洲乱淫| 国产在线日韩欧美| 麻豆国产一区二区| 亚洲成人午夜影院| ...xxx性欧美| 国产亚洲欧洲一区高清在线观看| 欧美三级中文字| 99久久精品免费看| 国产91丝袜在线播放| 久草精品在线观看| 另类小说综合欧美亚洲| 制服丝袜成人动漫| 欧美色图天堂网| 欧美亚一区二区| 日本韩国欧美一区二区三区| 国产一区二区三区日韩| 日韩不卡在线观看日韩不卡视频| 亚洲精品五月天| 亚洲综合一区二区三区| 亚洲日本在线观看| 亚洲女同ⅹxx女同tv| 亚洲人xxxx| 亚洲已满18点击进入久久| 国产精品高潮呻吟久久| 国产精品每日更新| 亚洲精品成人在线| 亚洲高清三级视频| 久久99精品国产麻豆婷婷| 麻豆精品蜜桃视频网站| 精品一区二区三区免费毛片爱| 青草av.久久免费一区| 久久99精品国产91久久来源| 激情成人午夜视频| 成人永久看片免费视频天堂| 色综合天天综合狠狠| 成人国产亚洲欧美成人综合网| 色婷婷av一区二区| 日韩欧美高清dvd碟片| 久久久不卡影院| 中文字幕一区二区三中文字幕| 一区二区三区视频在线看| 日韩电影免费在线看| 国产真实乱偷精品视频免| 91尤物视频在线观看| 欧美午夜电影在线播放| 精品av综合导航| 亚洲自拍偷拍网站| 国产精品99久久不卡二区| 日本丰满少妇一区二区三区| 日韩美女天天操| 18欧美乱大交hd1984| 日韩av二区在线播放| 国产a精品视频| 欧美高清hd18日本| 国产精品毛片a∨一区二区三区| 亚洲国产日韩精品| 成人国产精品视频| 日韩欧美一区电影| 亚洲高清久久久| 91小宝寻花一区二区三区| 精品盗摄一区二区三区| 日韩精品乱码av一区二区| 成人国产精品免费观看| 亚洲精品在线电影| 蜜桃视频在线观看一区二区| 色香色香欲天天天影视综合网 | 欧美三级乱人伦电影| 欧美韩国一区二区| 国产高清不卡二三区| 久久免费看少妇高潮| 日韩激情在线观看| 91精品在线免费观看| 亚洲3atv精品一区二区三区| 欧洲亚洲精品在线| 亚洲综合图片区| 欧美日韩精品系列| 日韩av电影免费观看高清完整版| 色激情天天射综合网| 亚洲免费资源在线播放| 91免费视频网址| 亚洲卡通欧美制服中文| 在线观看网站黄不卡| 香蕉成人啪国产精品视频综合网| 色婷婷综合久久久久中文| 亚洲免费高清视频在线| 在线观看91av| 狠狠狠色丁香婷婷综合激情| 久久久综合视频| 成人aa视频在线观看| 亚洲女人****多毛耸耸8| 91黄色在线观看| 天天综合日日夜夜精品| 91精品国产综合久久福利软件| 日精品一区二区| 久久理论电影网| 亚洲激情六月丁香| 欧美日韩卡一卡二| 极品少妇一区二区| 欧美色欧美亚洲另类二区| 青青草97国产精品免费观看| 精品国一区二区三区| 国产精品一区二区不卡| 亚洲激情欧美激情| 69久久夜色精品国产69蝌蚪网| 狠狠色丁香久久婷婷综| 国产精品美日韩| 91精品福利在线一区二区三区| 国产精品一区二区你懂的| 亚洲精品欧美在线| 久久欧美中文字幕| 欧美日韩在线直播| 99久久国产综合精品麻豆| 一区二区高清在线| 国产喷白浆一区二区三区| 国产精品18久久久久| 午夜久久久影院| 国产精品乱人伦| 日韩欧美综合在线| 欧美日韩国产免费| 成人一区二区三区在线观看| 日韩在线播放一区二区| 欧美日韩精品欧美日韩精品| 国产成人亚洲精品青草天美| 日本成人在线电影网| 亚洲美女在线国产| 国产精品二三区| 久久久九九九九| 精品国产一区二区三区久久久蜜月 | 91精品国产综合久久蜜臀| 91麻豆精品在线观看| 欧美国产日韩在线观看| 精品久久久久久久久久久久久久久久久| 99久久99久久综合| 国产精品66部| 成人在线综合网| 国产精品18久久久久久久久久久久| 日韩av在线播放中文字幕| 中文字幕一区二区三区精华液 | 黄色日韩网站视频| 久久99热国产| 国产成人综合精品三级| 狠狠色狠狠色综合| 欧美aⅴ一区二区三区视频| 正在播放一区二区| 国产精品电影一区二区三区| 久久男人中文字幕资源站| 91麻豆精品91久久久久久清纯| 欧美mv和日韩mv国产网站| 国产亚洲欧美一级| 国产激情一区二区三区| 精品奇米国产一区二区三区| 天堂一区二区在线免费观看| 欧美日韩成人综合天天影院| 亚洲欧洲综合另类在线| 亚洲图片欧美综合| 制服丝袜中文字幕一区| 三级影片在线观看欧美日韩一区二区| 国产福利91精品| 国产精品黄色在线观看| 99免费精品视频| 亚洲高清不卡在线| 99re热这里只有精品免费视频 | 午夜精品影院在线观看| 日本久久一区二区三区| 亚洲欧美国产77777| 4438x亚洲最大成人网|